Effect of wavelength selection on the accuracy of blood oxygen saturation estimates obtained from photoacoustic images
نویسندگان
چکیده
In photoacoustic tomography (PAT) the image contrast is due to optical absorption, and because of this PAT images are sensitive to changes in blood oxygen saturation (sO2). However, this is not a linear relationship due to the presence of a non-uniform light fluence distribution. In this paper we systematically evaluate the conditions in which an approximate linear inversion scheme – which assumes the internal fluence distribution is unchanged when the absorption coefficient changes – can give accurate estimates of sO2. A numerical phantom of highly vascularised tissue is used a test case for this assumption. It is shown that using multiple wavelengths over a broad range of the near-infrared spectrum yields inaccurate estimates of oxygenation, while a careful selection of wavelengths in the 620-920nm range is likely to yield more accurate oxygenation values. (We demonstrate that a 1D fluence correction, obtained from the average decay rate in the image, can further improve the estimates.) However, opting to use these longer wavelengths involves sacrificing signal-to-noise ratio in the image, as the absorption of blood is low in this range. This results in an inherent trade-off between uncertainty in the sO2 estimates due to fluence variation and error due to noise. This study shows that the depth to which sO2 can be estimated accurately using a linear approximation is limited in vivo, even with idealised measurements, to at most 3mm. In practice, there will be even greater uncertainties affecting the estimates, eg. due to bandlimited or partial-view acoustic detection.
منابع مشابه
In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution.
Pulsed photoacoustic spectroscopy was used to measure blood oxygen saturation in vitro. An optical parametric oscillator laser system provided nanosecond excitation pulses over the wavelength range 740-1040 nm which were used to generate photoacoustic signals in a cuvette through which a saline suspension of red blood cells was circulated. The signal amplitude and the effective attenuation coef...
متن کاملQuantitative in vivo measurements of blood oxygen saturation using multiwavelength photoacoustic imaging
Multiwavelength photoacoustic imaging was used to make spatially resolved measurements of blood oxygen saturation (sO2) in vivo. 2D cross-sectional images of the initial absorbed optical energy distribution in the finger were acquired at near-infrared wavelengths using a photoacoustic imaging system. Using the structural information from these images, a 2D finite element forward model of the li...
متن کاملBlood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study.
The metabolic rate of oxygen consumption, an important indicator of tissue metabolism, can be expressed as the change of net blood oxygen flux into and out of a tissue region per 100 g of tissue. In this work, we propose a photoacoustic and Doppler ultrasound method for imaging local blood oxygen flux of a single vessel. An imaging system for combined photoacoustic and high-frequency ultrasound...
متن کاملPulsed near-infrared photoacoustic spectroscopy of blood
The aim of this study was to use pulsed near infrared photoacoustic spectroscopy to determine the oxygen saturation (SO2) of a saline suspension of red blood cells in vitro. The photoacoustic measurements were made in a cuvette which formed part of a larger circuit through which the red blood cell suspension was circulated. Oxygen saturation of the red blood cell suspension was altered between ...
متن کاملAccuracy of Approximate Inversion Schemes in Quantitative Photacoustic Imaging
Five numerical phantoms were developed to investigate the accuracy of approximate inversion schemes in the reconstruction of oxygen saturation in photoacoustic imaging. In particular, two types of inversion are considered: Type I, an inversion that assumes fluence is unchanged between illumination wavelengths, and Type II, a method that assumes known background absorption and scattering coeffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015